Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research on genetic influences on human fertility outcomes such as number of children ever born (NEB) or the age at first childbirth (AFB) has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML) methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758), results show significant additive genetic effects on both traits explaining 10% (SE = 5) of the variance in the NEB and 15% (SE = 4) in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02). This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

Original publication

DOI

10.1371/journal.pone.0126821

Type

Journal article

Journal

PLoS One

Publication Date

2015

Volume

10

Keywords

Adolescent, Adult, Cohort Studies, Female, Fertility, Genetics, Medical, Humans, Male, Models, Genetic, Netherlands, Selection, Genetic, United Kingdom