Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The Microsoft SenseCam, a small camera that is worn on the chest via a lanyard, increasingly is being deployed in health research. However, the SenseCam and other wearable cameras are not yet in widespread use because of a variety of factors. It is proposed that the ubiquitous smartphones can provide a more accessible alternative to SenseCam and similar devices. PURPOSE: To perform an initial evaluation of the potential of smartphones to become an alternative to a wearable camera such as the SenseCam. METHODS: In 2012, adults were supplied with a smartphone, which they wore on a lanyard, that ran life-logging software. Participants wore the smartphone for up to 1 day and the resulting life-log data were both manually annotated and automatically analyzed for the presence of visual concepts. The results were compared to prior work using the SenseCam. RESULTS: In total, 166,000 smartphone photos were gathered from 47 individuals, along with associated sensor readings. The average time spent wearing the device across all users was 5 hours 39 minutes (SD=4 hours 11 minutes). A subset of 36,698 photos was selected for manual annotation by five researchers. Software analysis of these photos supports the automatic identification of activities to a similar level of accuracy as for SenseCam images in a previous study. CONCLUSIONS: Many aspects of the functionality of a SenseCam largely can be replicated, and in some cases enhanced, by the ubiquitous smartphone platform. This makes smartphones good candidates for a new generation of wearable sensing devices in health research, because of their widespread use across many populations. It is envisioned that smartphones will provide a compelling alternative to the dedicated SenseCam hardware for a number of users and application areas. This will be achieved by integrating new types of sensor data, leveraging the smartphone's real-time connectivity and rich user interface, and providing support for a range of relatively sophisticated applications.

Original publication

DOI

10.1016/j.amepre.2012.11.010

Type

Journal article

Journal

Am J Prev Med

Publication Date

03/2013

Volume

44

Pages

308 - 313

Keywords

Cell Phones, Computers, Handheld, Health Behavior, Health Surveys, Humans, Life Style, Photography, Time Factors