Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Acute cardiorespiratory breathlessness accounts for one in eight of all emergency hospitalizations. Early, noninvasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to find and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute cardiorespiratory disease and understand breath metabolite network enrichment in acute disease, with a view to gaining mechanistic insight of breath biochemical derangements. We collected and analyzed exhaled breath samples from 277 participants presenting acute cardiorespiratory exacerbations and aged-matched healthy volunteers. Topological data analysis phenotypes differentiated acute disease from health and acute cardiorespiratory exacerbation subtypes (acute heart failure, acute asthma, acute chronic obstructive pulmonary disease, and community-acquired pneumonia). A multibiomarker score (101 breath biomarkers) demonstrated good diagnostic sensitivity and specificity (≥80%) in both discovery and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly specific enrichment patterns in all acute disease subgroups, for example, selective enrichment of correlated C5-7 hydrocarbons and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute asthma. This study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associated subtypes and metabolic clusters of disease-associated VOCs.

Original publication

DOI

10.1126/scitranslmed.abl5849

Type

Journal article

Journal

Sci Transl Med

Publication Date

16/11/2022

Volume

14

Keywords

Humans, Breath Tests, Volatile Organic Compounds, Acute Disease, Dyspnea, Asthma, Biomarkers, Heart Failure