Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Extensive global sampling and whole genome sequencing of the pandemic virus SARS-CoV-2 have enabled researchers to characterise its spread, and to identify mutations that may increase transmission or enable the virus to escape therapies or vaccines. Two important components of viral spread are how frequently variants arise within individuals, and how likely they are to be transmitted. Here, we characterise the within-host diversity of SARS-CoV-2, and the extent to which genetic diversity is transmitted, by quantifying variant frequencies in 1390 clinical samples from the UK, many from individuals in known epidemiological clusters. We show that SARS-CoV-2 infections are characterised by low levels of within-host diversity across the entire viral genome, with evidence of strong evolutionary constraint in Spike, a key target of vaccines and antibody-based therapies. Although within-host variants can be observed in multiple individuals in the same phylogenetic or epidemiological cluster, highly infectious individuals with high viral load carry only a limited repertoire of viral diversity. Most viral variants are either lost, or occasionally fixed, at the point of transmission, consistent with a narrow transmission bottleneck. These results suggest potential vaccine-escape mutations are likely to be rare in infectious individuals. Nonetheless, we identified Spike variants present in multiple individuals that may affect receptor binding or neutralisation by antibodies. Since the fitness advantage of escape mutations in highly-vaccinated populations is likely to be substantial, resulting in rapid spread if and when they do emerge, these findings underline the need for continued vigilance and monitoring.

Original publication

DOI

10.1101/2020.05.28.118992

Type

Journal article

Publication Date

28/05/2020

Keywords

The COVID-19 Genomics UK (COG-UK) consortium