Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Novelty detection, or one-class classification, is of particular use in the analysis of high-integrity systems, in which examples of failure are rare in comparison with the number of examples of stable behaviour, such that a conventional multi-class classification approach cannot be taken. Support Vector Machines (SVMs) are a popular means of performing novelty detection, and it is conventional practice to use a train-validate-test approach, often involving cross-validation, to train the one-class SVM, and then select appropriate values for its parameters. An alternative method, used with multi-class SVMs, is to calibrate the SVM output into conditional class probabilities. A probabilistic approach offers many advantages over the conventional method, including the facility to select automatically a probabilistic novelty threshold. The contributions of this paper are (i) the development of a probabilistic calibration technique for one-class SVMs, such that on-line novelty detection may be performed in a probabilistic manner; and (ii) the demonstration of the advantages of the proposed method (in comparison to the conventional one-class SVM methodology) using case studies, in which one-class probabilistic SVMs are used to perform condition monitoring of a high-integrity industrial combustion plant, and in detecting deterioration in patient physiological condition during patient vital-sign monitoring. © 2014 IEEE.

Original publication




Journal article


IEEE Transactions on Reliability

Publication Date





455 - 467