Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

background

Functional genetic variants modify the expression and/or activity of proteins which may represent potential drug targets. These natural experiments in human populations can improve the drug development process, such as assisting in prioritising targets based on predicted efficacy, assessing safety, identifying alternative indications and informing clinical trial designs. Large prospective biobank studies with electronic monitoring of a wide range of health conditions are uniquely positioned to fulfil these goals.

The China Kadoorie Biobank (CKB) is a prospective cohort of 0.5 million participants established during 2004-08, with follow-up through linkage to death registries and hospital records (www.ckbiobank.org). Genome-wide SNP data, including 80,000 potential functional genetic variants, are currently available for 100,000 participants. These data are complemented by whole genome sequence data and blood biomarkers (e.g. metabolomics, proteomics and serology) in a subset of participants.

RESEARCH EXPERIENCE, RESEARCH METHODS AND TRAINING

The DPhil project will assess the biological pathways and clinical outcomes associated with genetic variation in potential therapeutic targets, and will identify novel targets for certain diseases. The specific area of research will be developed in discussion with the student and, depending on their interests and aptitude, may include the following key objectives:

  1. Identifying alternative indications for established drugs (i.e. repurposing).
  2. Assessing efficacy and safety of drug targets at different stages of clinical development
  3. Screening for novel targets in specified disease areas e.g. cardiovascular; metabolic; neurological; cancer.
  4. Identifying the phenotypic and clinical impacts of variations in biological pathways and systems.

There will be training opportunities in genetics, epidemiology, statistical analysis, and attendance at relevant courses such as genetic analysis studies. By the end of the DPhil, the student will be able to plan, undertake and interpret analyses of large-scale genetic and epidemiological data, and report research findings, including some publications as the lead author in peer-reviewed journals conference presentation.

FIELD WORK, SECONDMENTS, INDUSTRY PLACEMENTS AND TRAINING

The project will be based within the CKB research group, part of the Nuffield Department of Population Health and based in the Big Data Institute. There are excellent facilities and a world-class community of population health, data science and genomic medicine researchers. There may be opportunities to work with external partners from industry and other research institutions. 

prospective candidate

The candidate should have a 2.1 and higher degree in a relevant subject, with a strong interest in epidemiology, genetics, or statistics. The project will involve large-scale data analyses and requires previous statistical and programming experience.

Supervisors