Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.


Observational studies suggest that excess general and abdominal adiposity are associated with increased risk of chronic respiratory diseases. However, most studies were limited to diagnosed chronic obstructive pulmonary disease or lung cancer, and the causal relationships between adiposity and such outcomes are largely unknown. Furthermore, different components of body composition or body fat distribution might have very different relevance to risk from different respiratory conditions. The UKB is uniquely positioned to address these questions.

The UK Biobank (UKB) is a cohort of 0.5M participants with extensive phenotypic information from questionnaire and spirometry, biochemistry and imaging, large-scale whole genome genotyping, hospitalisation and mortality registers. This project aims to systematically assess the observational and genetic relevance of various markers of adiposity to multiple respiratory disease within UKB, and to elucidate the causal relationships between genetic signatures of different markers of adiposity and specific respiratory diseases. In-depth analyses will include both diagnosed and un-diagnosed lung impairment, and their severity.

The aims for this project may include the following:

  1. Assess the shape and strength of associations of multiple markers of adiposity with lung function-measures and diagnosed respiratory diseases.
  2. Employ Mendelian randomisation approaches (one- and two-sample methods) to assess causality of asociations between adiposity traits and chronic respitory diseases.


The student will gain experience in non-communicable diseases epidemiological research and analysis of large-scale prospective data. They will develop skills in conducting systematic literature reviews, study design and planning, statistical programming, data analysis, including Mendelian Randomisation and presentation skills. The student will be supported to publish peer-reviewed papers as the lead author during their DPhil.


Training in advanced statistics, epidemiological methods, programming, and scientific writing will be provided. Attendance at seminars, workshops and courses provided by the Department and University will also be encouraged. There will be opportunity to present research work at relevant international/national conferences.


Candidates should have a postgraduate degree in clinical medicine, public health, statistics or genetic epidemiology. Proficiency with STATA, R or SAS is essential.