Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Serum total cholesterol and its fractions are inversely associated with intracerebral hemorrhages (ICH) and their potential subclinical precursor, cerebral microbleeds. To ascertain whether there is a genetic basis for this inverse association, we studied established genetic loci for serum total, LDL, and HDL cholesterol, and triglycerides in their association with ICH and microbleeds. METHODS: Data on 161 genetic variants for serum lipids was collected in 9011 stroke-free participants (mean age 65.8, SD 10.2; 57.9% women) of the population-based Rotterdam Study. Participants were followed from baseline (1997-2005) up to 2013 for the occurrence of ICH. A subset of 4179 participants underwent brain MRI for microbleed assessment between 2005 and 2011. We computed genetic risk scores (GRS) for the joint effect of lipid variants. Cox proportional hazards and logistic regression models were used to investigate the association of GRS of lipid fractions with ICH and microbleeds. RESULTS: After a mean follow-up of 8.7 (SD 4.1) years, 67 (0.7%) participants suffered an ICH. Microbleed prevalence was 19.6%. Higher genetic load for high serum total and LDL cholesterol was associated with an increased risk of ICH. Higher genetic load for high serum LDL cholesterol was borderline associated with a higher prevalence of multiple lobar microbleeds. CONCLUSIONS: Genetic susceptibility for high serum total and LDL cholesterol is positively associated with incident ICH and borderline associated with multiple lobar microbleeds. We did not find a genetic basis for the previously reported inverse association between serum lipid levels and ICH.

Original publication




Journal article



Publication Date





287 - 292


Cerebral microbleeds, Epidemiology, Genetics, Intracerebral hemorrhages, Lipids, Aged, Biomarkers, Cerebral Hemorrhage, Cholesterol, HDL, Cholesterol, LDL, Dyslipidemias, Female, Genetic Association Studies, Genetic Loci, Genetic Predisposition to Disease, Humans, Logistic Models, Magnetic Resonance Imaging, Male, Middle Aged, Netherlands, Odds Ratio, Phenotype, Prevalence, Proportional Hazards Models, Risk Assessment, Risk Factors, Triglycerides