Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2018 The Authors Connectivity studies of the brain are usually based on functional Magnetic Resonance Imaging (fMRI) experiments involving many subjects. These studies need to take into account not only the interaction between areas of a single brain but also the differences amongst those subjects. In this paper we develop a methodology called the group-structure (GS) approach that models possible heterogeneity between subjects and searches for distinct homogeneous sub-groups according to some measure that reflects the connectivity maps. We suggest a GS method that uses a novel distance based on a model selection measure, the Bayes factor. We then develop a new class of Multiregression Dynamic Models to estimate individual networks whilst acknowledging a GS type dependence structure across subjects. We compare the efficacy of this methodology to three other methods, virtual-typical-subject (VTS), individual-structure (IS) and common-structure (CS), used to infer a group network using both synthetic and real fMRI data. We find that the GS approach provides results that are both more consistent with the data and more flexible in their interpretative power than its competitors. In addition, we present two methods, the Individual Estimation of Multiple Networks (IEMN) and the Marginal Estimation of Multiple Networks (MEMN), generated from the GS approach and used to estimate all types of networks informed by an experiment —individual, homogeneous subgroups and group networks. These methods are then compared both from a theoretical perspective and in practice using real fMRI data.

Original publication




Journal article


Journal of Statistical Planning and Inference

Publication Date





43 - 61