Cognitive decision errors and organization vulnerabilities in nuclear power plant safety management: Modeling using the TOGA meta-theory framework
Cappelli M., Gadomski AM., Sepiellis M., Wronikowska MW.
In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff.