Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Nutrition labeling is a prominent policy to promote healthy eating.Objective: We aimed to evaluate the effects of 2 interpretive nutrition labels compared with a noninterpretive label on consumer food purchases.Design: In this parallel-group randomized controlled trial, we enrolled household shoppers across New Zealand who owned smartphones and were aged ≥18 y. Eligible participants were randomly assigned (1:1:1) to receive either traffic light labels (TLLs), Health Star Rating labels (HSRs), or a control [nutrition information panel (NIP)]. Smartphone technology allowed participants to scan barcodes of packaged foods and to receive allocated labels on their smartphone screens. The primary outcome was the mean healthiness of all packaged food purchases over the 4-wk intervention period, which was measured by using the Food Standards Australia New Zealand Nutrient Profiling Scoring Criterion (NPSC).Results: Between October 2014 and November 2015, 1357 eligible shoppers were randomly assigned to TLL (n = 459), HSR (n = 443), or NIP (n = 455) labels. Overall difference in the mean transformed NPSC score for the TLL group compared with the NIP group was -0.20 (95% CI: -0.94, 0.54; P = 0.60). The corresponding difference for HSR compared with NIP was -0.60 (95% CI: -1.35, 0.15; P = 0.12). In an exploratory per-protocol analysis of participants who used the labeling intervention more often than average (n = 423, 31%), those who were assigned to TLL and HSR had significantly better NPSC scores [TLL compared with NIP: -1.33 (95% CI: -2.63, -0.04; P = 0.04); HSR compared with NIP: -1.70 (95% CI: -2.97, -0.43; P = 0.01)]. Shoppers who were randomly assigned to HSR and TLL also found the labels significantly more useful and easy to understand than the NIP (all P values <0.001).Conclusions: At the relatively low level of use observed in this trial, interpretive nutrition labels had no significant effect on food purchases. However, shoppers who used interpretive labels found them to be significantly more useful and easy to understand, and compared with frequent NIP users, frequent TLL and HSR users had significantly healthier food purchases. This trial was registered at the Australian New Zealand Clinical Trials Registry (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366446&isReview=true) as ACTRN12614000644662.

Original publication

DOI

10.3945/ajcn.116.144956

Type

Journal article

Journal

Am J Clin Nutr

Publication Date

03/2017

Volume

105

Pages

695 - 704

Keywords

behavior, diet, labeling, nutrient profile, nutrition, randomized controlled trial, Adult, Commerce, Comprehension, Consumer Behavior, Family Characteristics, Female, Food Labeling, Food Packaging, Food Preferences, Health Behavior, Health Promotion, Humans, Male, Mobile Applications, New Zealand, Smartphone, Young Adult