Between Scylla and Charybdis: reconciling competing data management demands in the life sciences.
Bezuidenhout LM., Morrison M.
BACKGROUND: The widespread sharing of biologicaConcluding Comments: Teaching Responsible Datal and biomedical data is recognised as a key element in facilitating translation of scientific discoveries into novel clinical applications and services. At the same time, twenty-first century states are increasingly concerned that this data could also be used for purposes of bioterrorism. There is thus a tension between the desire to promote the sharing of data, as encapsulated by the Open Data movement, and the desire to prevent this data from 'falling into the wrong hands' as represented by 'dual use' policies. Both frameworks posit a moral duty for life sciences researchers with respect to how they should make their data available. However, Open data and dual use concerns are rarely discussed in concert and their implementation can present scientists with potentially conflicting ethical requirements. DISCUSSION: Both dual use and Open data policies frame scientific data and data dissemination in particular, though different, ways. As such they contain implicit models for how data is translated. Both approaches are limited by a focus on abstract conceptions of data and data sharing. This works to impede consensus-building between the two ethical frameworks. As an alternative, this paper proposes that an ethics of responsible management of scientific data should be based on a more nuanced understanding of the everyday data practices of life scientists. Responsibility for these 'micromovements' of data must consider the needs and duties of scientists as individuals and as collectively-organised groups. Researchers in the life sciences are faced with conflicting ethical responsibilities to share data as widely as possible, but prevent it being used for bioterrorist purposes. In order to reconcile the responsibilities posed by the Open Data and dual use frameworks, approaches should focus more on the everyday practices of laboratory scientists and less on abstract conceptions of data.