Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

IMPORTANCE: Low-density lipoprotein cholesterol (LDL-C) is causally related to coronary artery disease (CAD), but the relevance of high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs) is uncertain. Lowering of LDL-C levels by statin therapy modestly increases the risk of type 2 diabetes, but it is unknown whether this effect is specific to statins. OBJECTIVE: To investigate the associations of 3 routinely measured lipid fractions with CAD and diabetes through mendelian randomization (MR) using conventional MR and making use of newer approaches, such as multivariate MR and MR-Egger, that address the pleiotropy of genetic instruments where relevant. DESIGN, SETTING, AND PARTICIPANTS: Published data from genome-wide association studies were used to construct genetic instruments and then applied to investigate associations between lipid fractions and the risk of CAD and diabetes using MR approaches that took into account pleiotropy of genetic instruments. The study was conducted from March 12 to December 31, 2015. MAIN OUTCOMES AND MEASURES: Coronary artery disease and diabetes. RESULTS: Genetic instruments composed of 130 single-nucleotide polymorphisms (SNPs) were used for LDL-C (explaining 7.9% of its variance), 140 SNPs for HDL-C (6.6% of variance), and 140 SNPs for TGs (5.9% of variance). A 1-SD genetically instrumented elevation in LDL-C levels (equivalent to 38 mg/dL) and TG levels (equivalent to 89 mg/dL) was associated with higher CAD risk; odds ratios (ORs) were 1.68 (95% CI, 1.51-1.87) for LDL-C and 1.28 (95% CI, 1.13-1.45) for TGs. The corresponding OR for HDL-C (equivalent to a 16-mg/dL increase) was 0.95 (95% CI, 0.85-1.06). All 3 lipid traits were associated with a lower risk of type 2 diabetes. The ORs were 0.79 (95% CI, 0.71-0.88) for LDL-C and 0.83 (95% CI, 0.76-0.90) for HDL-C per 1-SD elevation. For TG, the MR estimates for diabetes were inconsistent, with MR-Egger giving an OR of 0.83 (95%CI, 0.72-0.95) per 1-SD elevation. CONCLUSIONS AND RELEVANCE: Routinely measured lipid fractions exhibit contrasting associations with the risk of CAD and diabetes. Increased LDL-C, HDL-C, and possibly TG levels are associated with a lower risk of diabetes. This information will be relevant to the design of clinical trials of lipid-modifying agents, which should carefully monitor participants for dysglycemia and the incidence of diabetes.

Original publication

DOI

10.1001/jamacardio.2016.1884

Type

Journal article

Journal

JAMA Cardiol

Publication Date

01/09/2016

Volume

1

Pages

692 - 699