Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Neural networks are being increasingly used for problems involving function approximation. However, a key limitation of neural methods is the lack of a measure of how much confidence can be placed in output estimates. In the last few years many authors have addressed this shortcoming from various angles, focusing primarily on predicting output bounds as a function of the trained network's characteristics, typically as defined by the Hessian matrix. In this paper the problem of the effect of errors or noise in the presented, input, vector is examined and a method based on perturbation analysis of determining output bounds based on both the error in the input vector and the imperfections in the weight values after training is presented and demonstrated.

Original publication

DOI

10.1109/72.750542

Type

Journal article

Journal

IEEE Trans Neural Netw

Publication Date

1999

Volume

10

Pages

217 - 230