Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The electro-encephalogram is a time-varying signal that measures electrical activity in the brain. A conceptually intuitive non-linear technique, multi-dimensional probability evolution (MDPE), is introduced. It is based on the time evolution of the probability density function within a multi-dimensional state space. A synthetic recording is employed to illustrate why MDPE is capable of detecting changes in the underlying dynamics that are invisible to linear statistics. If a non-linear statistic cannot outperform a simple linear statistic such as variance, then there is no reason to advocate its use. Both variance and MDPE were able to detect the seizure in each of the ten scalp EEG recordings investigated. Although MDPE produced fewer false positives, there is no firm evidence to suggest that MDPE, or any other non-linear statistic considered, outperforms variance-based methods at identifying seizures.

Type

Journal article

Journal

Med Biol Eng Comput

Publication Date

07/2002

Volume

40

Pages

447 - 461

Keywords

Electroencephalography, Epilepsy, Humans, Linear Models, Nonlinear Dynamics, Scalp, Signal Processing, Computer-Assisted