Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Motivation: Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We sought to investigate if deep learning approaches can detect more nuanced patterns of image variability. Results: We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31135 UK Biobank participants. For each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encompassed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demonstrate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and provides epidemiologically informative biomarkers.

Original publication

DOI

10.1093/bioinformatics/btae732

Type

Journal article

Journal

Bioinformatics

Publication Date

01/01/2025

Volume

41