Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Domain adaptation has great values in unpaired cross-modality image segmentation, where the training images with gold standard segmentation are not available from the target image domain. The aim is to reduce the distribution discrepancy between the source and target domains. Hence, an effective measurement for this discrepancy is critical. In this work, we propose a new metric based on characteristic functions of distributions. This metric, referred to as CF distance, enables explicit domain adaptation, in contrast to the implicit manners minimizing domain discrepancy via adversarial training. Based on this CF distance, we propose an unsupervised domain adaptation framework for cross-modality cardiac segmentation, which consists of image reconstruction and prior distribution matching. We validated the method on two tasks, i.e., the CT-MR cross-modality segmentation and the multi-sequence cardiac MR segmentation. Results showed that the proposed explicit metric was effective in domain adaptation, and the segmentation method delivered promising and superior performance, compared to other state-of-the-art techniques. The data and source code of this work has been released via https://zmiclab.github.io/projects.html.

Original publication

DOI

10.1109/TMI.2020.3016144

Type

Journal article

Journal

IEEE Trans Med Imaging

Publication Date

12/2020

Volume

39

Pages

4274 - 4285

Keywords

Heart, Image Processing, Computer-Assisted, Software