Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Supervised segmentation can be costly, particularly in applications of biomedical image analysis where large scale manual annotations from experts are generally too expensive to be available. Semi-supervised segmentation, able to learn from both the labeled and unlabeled images, could be an efficient and effective alternative for such scenarios. In this work, we propose a new formulation based on risk minimization, which makes full use of the unlabeled images. Different from most of the existing approaches which solely explicitly guarantee the minimization of prediction risks from the labeled training images, the new formulation also considers the risks on unlabeled images. Particularly, this is achieved via an unbiased estimator, based on which we develop a general framework for semi-supervised image segmentation. We validate this framework on three medical image segmentation tasks, namely cardiac segmentation on ACDC2017, optic cup and disc segmentation on REFUGE dataset and 3D whole heart segmentation on MM-WHS dataset. Results show that the proposed estimator is effective, and the segmentation method achieves superior performance and demonstrates great potential compared to the other state-of-the-art approaches. Our code and data will be released via https://zmiclab.github.io/projects.html, once the manuscript is accepted for publication.

Original publication

DOI

10.1109/TPAMI.2022.3215186

Type

Journal article

Journal

IEEE Trans Pattern Anal Mach Intell

Publication Date

05/2023

Volume

45

Pages

6021 - 6036

Keywords

Algorithms, Heart, Image Processing, Computer-Assisted