Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: South African civil registration (CR) provides a key data source for local health decision making, and informs the levels and causes of mortality in data-lacking sub-Saharan African countries. We linked mortality data from CR and the Agincourt Health and Socio-demographic Surveillance System (Agincourt HDSS) to examine the quality of rural CR data. METHODS: Deterministic and probabilistic techniques were used to link death data from 2006 to 2009. Causes of death were aggregated into the WHO Mortality Tabulation List 1 and a locally relevant short list of 15 causes. The matching rate was compared with informant-reported death registration. Using the VA diagnoses as reference, misclassification patterns, sensitivity, positive predictive values and cause-specific mortality fractions (CSMFs) were calculated for the short list. RESULTS: A matching rate of 61% [95% confidence interval (CI): 59.2 to 62.3] was attained, lower than the informant-reported registration rate of 85% (CI: 83.4 to 85.8). For the 2264 matched cases, cause agreement was 15% (kappa 0.1083, CI: 0.0995 to 0.1171) for the WHO list, and 23% (kappa 0.1631, CI: 0.1511 to 0.1751) for the short list. CSMFs were significantly different for all but four (tuberculosis, cerebrovascular disease, other heart disease, and ill-defined natural) of the 15 causes evaluated. CONCLUSION: Despite data limitations, it is feasible to link official CR and HDSS verbal autopsy data. Data linkage proved a promising method to provide empirical evidence about the quality and utility of rural CR mortality data. Agreement of individual causes of death was low but, at the population level, careful interpretation of the CR data can assist health prioritization and planning.

Original publication

DOI

10.1093/ije/dyu156

Type

Journal article

Journal

Int J Epidemiol

Publication Date

12/2014

Volume

43

Pages

1945 - 1958

Keywords

Agincourt Health and Demographic Surveillance System, Mortality, Statistics South Africa, causes of death, data linkage, data quality, rural South Africa, verbal autopsy, vital statistics, Adolescent, Adult, Aged, Aged, 80 and over, Cause of Death, Child, Child, Preschool, Data Collection, Female, Humans, Infant, Male, Middle Aged, Registries, Research Design, Rural Population, South Africa, Vital Statistics, Young Adult