Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: High-impact physical activity is associated with bone health, but higher volumes of lower-intensity activity may also be important. The aims of this study were to: 1) investigate the relative importance of volume and intensity of physical activity accumulated during late adolescence for bone health at age 23 yr; and 2) illustrate interpretation of the results. METHODS: This is a secondary analysis of data from the Iowa Bone Development Study, a longitudinal study of bone health from childhood through to young adulthood. The volume (average acceleration) and intensity distribution (intensity gradient) of activity at age 17, 19, 21, and 23 yr were calculated from raw acceleration ActiGraph data and averaged across ages. Hip areal bone mineral density (aBMD), total body bone mineral content (BMC), spine aBMD, and hip structural geometry (dual-energy X-ray absorptiometry, Hologic QDR4500A) were assessed at age 23 yr. Valid data, available for 220 participants (124 girls), were analyzed with multiple regression. To elucidate significant effects, we predicted bone outcomes when activity volume and intensity were high (+1SD), medium (mean), and low (-1SD). RESULTS: There were additive associations of volume and intensity with hip aBMD and total body BMC (low-intensity/low-volume cf. high-intensity/high-volume = [INCREMENT]0.082 g·cm and [INCREMENT]169.8 g, respectively). For males only, spine aBMD intensity was associated independently of volume (low-intensity cf. high-intensity = [INCREMENT]0.049 g·cm). For hip structural geometry, volume was associated independently of intensity (low-volume cf. high-volume = [INCREMENT]4.8-6.6%). CONCLUSIONS: The activity profile associated with optimal bone outcomes was high in intensity and volume. The variation in bone health across the activity volume and intensity distribution suggests intensity is key for aBMD and BMC, whereas high volumes of lower intensity activity may be beneficial for hip structural geometry.

Original publication

DOI

10.1249/MSS.0000000000002380

Type

Journal article

Journal

Med Sci Sports Exerc

Publication Date

11/2020

Volume

52

Pages

2331 - 2341

Keywords

Accelerometry, Adolescent, Adult, Bone Density, Exercise, Female, Humans, Longitudinal Studies, Male, Young Adult