Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The success of deep learning on image classification and recognition tasks has led to new applications in diverse contexts, including the field of medical imaging. However, two properties of deep neural networks (DNNs) may limit their future use in medical applications. The first is that DNNs require a large amount of labeled training data, and the second is that the deep learning-based models lack interpretability. In this paper, we propose and investigate a data-efficient framework for the task of general medical image segmentation. We address the two aforementioned challenges by introducing domain knowledge in the form of a strong prior into a deep learning framework. This prior is expressed by a customized dynamical system. We performed experiments on two different datasets, namely JSRT and ISIC2016 (heart and lungs segmentation on chest X-ray images and skin lesion segmentation on dermoscopy images). We have achieved competitive results using the same amount of training data compared to the state-of-the-art methods. More importantly, we demonstrate that our framework is extremely data-efficient, and it can achieve reliable results using extremely limited training data. Furthermore, the proposed method is rotationally invariant and insensitive to initialization.

Original publication

DOI

10.1016/j.media.2024.103196

Type

Journal article

Journal

Med Image Anal

Publication Date

07/2024

Volume

95

Keywords

Data-efficiency, Deep neural network, Dynamical system, Medical image segmentation, Humans, Deep Learning, Lung, Neural Networks, Computer, Image Processing, Computer-Assisted, Radiography, Thoracic, Algorithms, Heart