Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MicroRNAs (miRNAs) regulate the expression of the majority of genes. However, it is not known whether they regulate genes in random or are organized according to their function. To this end, we chose cardiometabolic disorders as an example and investigated whether genes associated with cardiometabolic disorders are regulated by a random set of miRNAs or a limited number of them. Single-nucleotide polymorphisms (SNPs) reaching genome-wide level significance were retrieved from most recent genome-wide association studies on cardiometabolic traits, which were cross-referenced with Ensembl to identify related genes and combined with miRNA target prediction databases (TargetScan, miRTarBase, or miRecords) to identify miRNAs that regulate them. We retrieved 520 SNPs, of which 355 were intragenic, corresponding to 304 genes. While we found a higher proportion of genes reported from all GWAS that were predicted targets for miRNAs in comparison to all protein-coding genes (75.1%), the proportion was even higher for cardiometabolic genes (80.6%). Enrichment analysis was performed within each database. We found that cardiometabolic genes were over-represented in target genes for 29 miRNAs (based on TargetScan) and 3 miRNAs (miR-181a, miR-302d and miR-372) (based on miRecords) after Benjamini-Hochberg correction for multiple testing. Our work provides evidence for non-random assignment of genes to miRNAs and supports the idea that miRNAs regulate sets of genes that are functionally related.

Original publication




Journal article


Int J Mol Sci

Publication Date





cardiometabolic, enrichment analysis, genome-wide association studies, microRNAs, Databases, Genetic, Gene Expression Regulation, Genes, Genetic Pleiotropy, Genome-Wide Association Study, Humans, MicroRNAs, Myocardium, Quantitative Trait, Heritable