Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cortical and subcortical forebrain connections of the marmoset prefrontal cortex (PFC) were examined by injecting the retrograde tracer, choleratoxin, and the anterograde tracer, biotin dextran amine, into four sites within the PFC. Two of the sites, the lateral and orbital regions, had previously been shown to provide functionally dissociable contributions to distinct forms of behavioral flexibility, attentional set-shifting and discrimination reversal learning, respectively. The dysgranular and agranular regions lying on the orbital and medial surfaces of the frontal lobes were most closely connected with limbic structures including cingulate cortex, amygdala, parahippocampal cortex, subiculum, hippocampus, hypothalamus, medial caudate nucleus, and nucleus accumbens as well as the magnocellular division of the mediodorsal nucleus of the thalamus and midline thalamic nuclei, consistent with findings in the rhesus monkey. In contrast, the granular region on the dorsal surface closely resembled area 8Ad in macaques and had connections restricted to posterior parietal cortex primarily associated with visuospatial functions. However, it also had connections with limbic cortex, including retrosplenial and caudal cingulate cortex as well as auditory processing regions in the superior temporal cortex. The granular region on the lateral convexity had the most extensive connections. Based on its architectonics and functionality, it resembled areas 12/45 in macaques. It had connections with high-order visual processing regions in the inferotemporal cortex and posterior parietal cortex, higher-order auditory and polymodal processing regions in the superior temporal cortex. In addition it had extensive connections with limbic regions including the amygdala, parahippocampal cortex, cingulate, and retrosplenial cortex.

Original publication

DOI

10.1002/cne.21300

Type

Journal article

Journal

The Journal of comparative neurology

Publication Date

05/2007

Volume

502

Pages

86 - 112

Addresses

Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK. acr4@cam.ac.uk

Keywords

Prosencephalon, Prefrontal Cortex, Neural Pathways, Axons, Animals, Callithrix, Indicators and Reagents, Histocytochemistry, Biological Transport, Female, Male