Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain extraction (masking of extra-cranial tissue) and alignment are fundamental first steps of most neuroimage analysis pipelines. The lack of automated solutions for 3D ultrasound (US) has therefore limited its potential as a neuroimaging modality for studying fetal brain development using routinely acquired scans. In this work, we propose a convolutional neural network (CNN) that accurately and consistently aligns and extracts the fetal brain from minimally pre-processed 3D US scans. Our multi-task CNN, Brain Extraction and Alignment Network (BEAN), consists of two independent branches: 1) a fully-convolutional encoder-decoder branch for brain extraction of unaligned scans, and 2) a two-step regression-based branch for similarity alignment of the brain to a common coordinate space. BEAN was tested on 356 fetal head scans spanning the gestational range of 14 to 30 weeks, significantly outperforming all current alternatives for fetal brain extraction and alignment. BEAN achieved state-of-the-art performance for both tasks, with a mean Dice Similarity Coefficient (DSC) of 0.94 for the brain extraction masks, and a mean DSC of 0.93 for the alignment of the target brain masks. The presented experimental results show that brain structures such as the thalamus, choroid plexus, cavum septum pellucidum, and Sylvian fissure, are consistently aligned throughout the dataset and remain clearly visible when the scans are averaged together. The BEAN implementation and related code can be found under www.github.com/felipemoser/kelluwen.

Original publication

DOI

10.1016/j.neuroimage.2022.119341

Type

Journal article

Journal

Neuroimage

Publication Date

30/05/2022

Keywords

3D ultrasound, Brain alignment, Brain extraction, Convolutional neural network, Deep Learning, Fetal brain development