Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homeostatic control of blood glucose requires different physiological responses in the fasting and post-prandial states. We reasoned that glucose measurements under non-standardised conditions (random glucose; RG) may capture diverse glucoregulatory processes more effectively than previous genome-wide association studies (GWAS) of fasting glycaemia or after standardised glucose loads. Through GWAS meta-analysis of RG in 493,036 individuals without diabetes of diverse ethnicities we identified 128 associated loci represented by 162 distinct signals, including 14 with sex-dimorphic effects, 9 discovered through trans-ethnic analysis, and 70 novel signals for glycaemic traits. Novel RG loci were particularly enriched in expression in the ileum and colon, indicating a prominent role for the gastrointestinal tract in the control of blood glucose. Functional studies and molecular dynamics simulations of coding variants of GLP1R , a well-established type 2 diabetes treatment target, provided a genetic framework for optimal selection of GLP-1R agonist therapy. We also provided new evidence from Mendelian randomisation that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Thus, our approach based on RG GWAS provided wide-ranging insights into the biology of glucose regulation, diabetes complications and the potential for treatment stratification.

Original publication




Journal article

Publication Date