Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The early clinical course of SARS-CoV-2 infection can be difficult to distinguish from other undifferentiated medical presentations to hospital, however viral specific real- time polymerase chain reaction (RT-PCR) testing has limited sensitivity and can take up to 48 hours for operational reasons. In this study, we develop two early-detection models to identify COVID-19 using routinely collected data typically available within one hour (laboratory tests, blood gas and vital signs) during 115,394 emergency presentations and 72,310 admissions to hospital. Our emergency department (ED) model achieved 77.4% sensitivity and 95.7% specificity (AUROC 0.939) for COVID- 19 amongst all patients attending hospital, and Admissions model achieved 77.4% sensitivity and 94.8% specificity (AUROC 0.940) for the subset admitted to hospital. Both models achieve high negative predictive values (>99%) across a range of prevalences (<5%), facilitating rapid exclusion during triage to guide infection control. We prospectively validated our models across all patients presenting and admitted to a large UK teaching hospital group in a two-week test period, achieving 92.3% (n= 3,326, NPV: 97.6%, AUROC: 0.881) and 92.5% accuracy (n=1,715, NPV: 97.7%, AUROC: 0.871) in comparison to RT-PCR results. Sensitivity analyses to account for uncertainty in negative PCR results improves apparent accuracy (95.1% and 94.1%) and NPV (99.0% and 98.5%). Our artificial intelligence models perform effectively as a screening test for COVID-19 in emergency departments and hospital admission units, offering high impact in settings where rapid testing is unavailable.

Original publication

DOI

10.1101/2020.07.07.20148361

Type

Journal article

Publication Date

08/07/2020