Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Longevity is an extremely complex phenotype that is determined by environment, life style and genetics. Genome wide association studies (GWAS) have been a powerful tool to identify the genetic origin of other complex outcome with a similar heritability. In this chapter we discuss the findings all GWAS of longevity conducted to date. Various cut-off to define longevity have been used varying from 85+, 90+ and 100+ years and the impact of these difference are addressed in this chapter. The only consistent association emerging from GWAS to data is the APOE gene that has been already identified as a candidate gene. Although (GWAS) have identified biologically plausible genes and pathways, no new loci for longevity have been conclusively proven. A reason for not finding any replicated associations for longevity could be the complexity of the phenotype, although heterogeneity also underlies many other traits for which GWAS has been successful. One may argue that rare variants explain the high heritability of longevity and the segregation of the trait in families. Yet, whole genome analyses of GWAS data still suggest that over 80 % of the heritability is explained by common variants. Although findings of GWAS to date have been disappointing, there is ample opportunity to improve the statistical power of studies to find common variants with small effects. In the near future, joining of the published studies and new ones emerging may bring to surface new loci.

Original publication

DOI

10.1007/978-1-4939-2404-2_5

Type

Chapter

Publication Date

2015

Volume

847

Pages

107 - 125

Keywords

Aging, Genome-Wide Association Study, Humans, Longevity