Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Despite a substantial genetic component, efforts to identify common genetic variation underlying depression have largely been unsuccessful. In the current study we aimed to identify rare genetic variants that might have large effects on depression in the general population. Using high-coverage exome-sequencing, we studied the exonic variants in 1265 individuals from the Rotterdam study (RS), who were assessed for depressive symptoms. We identified a missense Asn396Ser mutation (rs77960347) in the endothelial lipase (LIPG) gene, occurring with an allele frequency of 1% in the general population, which was significantly associated with depressive symptoms (P-value=5.2 × 10-08, β=7.2). Replication in three independent data sets (N=3612) confirmed the association of Asn396Ser (P-value=7.1 × 10-03, β=2.55) with depressive symptoms. LIPG is predicted to have enzymatic function in steroid biosynthesis, cholesterol biosynthesis and thyroid hormone metabolic processes. The Asn396Ser variant is predicted to have a damaging effect on the function of LIPG. Within the discovery population, carriers also showed an increased burden of white matter lesions (P-value=3.3 × 10-02) and a higher risk of Alzheimer's disease (odds ratio=2.01; P-value=2.8 × 10-02) compared with the non-carriers. Together, these findings implicate the Asn396Ser variant of LIPG in the pathogenesis of depressive symptoms in the general population.

Original publication

DOI

10.1038/mp.2016.101

Type

Journal article

Journal

Mol Psychiatry

Publication Date

04/2017

Volume

22

Pages

537 - 543

Keywords

Adult, Alleles, Alzheimer Disease, Cholesterol, HDL, Depression, Depressive Disorder, Exome, Exons, Female, Gene Frequency, Genetic Predisposition to Disease, Genetic Variation, Heterozygote, Humans, Lipase, Male, Middle Aged, Mutation, Missense, Polymorphism, Single Nucleotide, Risk Factors, Sequence Analysis, DNA