Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Late gadolinium enhancement magnetic resonance imaging (LGE MRI) appears to be a promising alternative for scar assessment in patients with atrial fibrillation (AF). Automating the quantification and analysis of atrial scars can be challenging due to the low image quality. In this work, we propose a fully automated method based on the graph-cuts framework, where the potentials of the graph are learned on a surface mesh of the left atrium (LA) using a multi-scale convolutional neural network (MS-CNN). For validation, we have included fifty-eight images with manual delineations. MS-CNN, which can efficiently incorporate both the local and global texture information of the images, has been shown to evidently improve the segmentation accuracy of the proposed graph-cuts based method. The segmentation could be further improved when the contribution between the t-link and n-link weights of the graph is balanced. The proposed method achieves a mean accuracy of 0.856 ± 0.033 and mean Dice score of 0.702 ± 0.071 for LA scar quantification. Compared to the conventional methods, which are based on the manual delineation of LA for initialization, our method is fully automatic and has demonstrated significantly better Dice score and accuracy (p 

Original publication

DOI

10.1016/j.media.2019.101595

Type

Journal article

Journal

Med Image Anal

Publication Date

02/2020

Volume

60

Keywords

Atrial fibrillation, Graph learning, LGE MRI, Left atrium, Multi-scale CNN, Scar segmentation, Atrial Fibrillation, Catheter Ablation, Cicatrix, Contrast Media, Heart Atria, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Neural Networks, Computer, Pulmonary Veins