Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Verisense Step Count Algorithm facilitates generation of steps from wrist-worn accelerometers. Based on preliminary evidence suggesting a proportional bias with overestimation at low steps/day, but underestimation at high steps/day, the algorithm parameters have been revised. We aimed to establish validity of the original and revised algorithms relative to waist-worn ActiGraph step cadence. We also assessed whether step cadence was similar across accelerometer brand and wrist. Ninety-eight participants (age: 58.6±11.1 y) undertook six walks (~500 m hard path) at different speeds (cadence: 92.9±9.5-127.9±8.7 steps/min) while wearing three accelerometers on each wrist (Axivity, GENEActiv, ActiGraph) and an ActiGraph on the waist. Of these, 24 participants also undertook one run (~1000 m). Mean bias for the original algorithm was -21 to -26.1 steps/min (95% limits of agreement (LoA) ~±65 steps/min) and mean absolute percentage error (MAPE) 17-22%. This was unevenly distributed with increasing error as speed increased. Mean bias and 95%LoA were halved with the revised algorithm parameters (~-10 to -12 steps/min, 95%LoA ~30 steps/min, MAPE ~10-12%). Performance was similar across brand and wrist. The revised step algorithm provides a more valid measure of step cadence than the original, with MAPE similar to recently reported wrist-wear summary MAPE (7-11%).

Original publication

DOI

10.1080/02640414.2022.2147134

Type

Journal article

Journal

J Sports Sci

Publication Date

10/2022

Volume

40

Pages

2182 - 2190

Keywords

ActiGraph, GENEActiv, Step count, axivity, brisk walking, open-source, Humans, Middle Aged, Aged, Wrist, Accelerometry, Wrist Joint, Abdomen, Algorithms, Walking