BACKGROUND: Adiposity is a major cause of morbidity and mortality in part due to effects on blood lipids. Nuclear magnetic resonance (NMR) spectroscopy provides direct information on >130 biomarkers mostly related to blood lipid particles. METHODS: Among 28,934 Mexican adults without chronic disease and not taking lipid-lowering therapy, we examine the cross-sectional relevance of body-mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and hip circumference (HC) to NMR-measured metabolic biomarkers. Confounder-adjusted associations between each adiposity measure and NMR biomarkers are estimated before and after mutual adjustment for other adiposity measures. RESULTS: Markers of general (ie, BMI), abdominal (ie, WC and WHR) and gluteo-femoral (ie, HC) adiposity all display similar and strong associations across the NMR-platform of biomarkers, particularly for biomarkers that increase cardiometabolic risk. Higher adiposity associates with higher levels of Apolipoprotein-B (about 0.35, 0.30, 0.35, and 0.25 SD higher Apolipoprotein-B per 2-SD higher BMI, WHR, WC, and HC, respectively), higher levels of very low-density lipoprotein particles (and the cholesterol, triglycerides, and phospholipids within these lipoproteins), higher levels of all fatty acids (particularly mono-unsaturated fatty acids) and multiple changes in other metabolic biomarkers including higher levels of branched-chain amino acids and the inflammation biomarker glycoprotein acetyls. Associations for general and abdominal adiposity are fairly independent of each other but, given general and abdominal adiposity, higher gluteo-femoral adiposity is associated with a strongly favourable cardiometabolic lipid profile. CONCLUSIONS: Our results provide insight to the lipidic and metabolomic signatures of different adiposity markers in a previously understudied population where adiposity is common but lipid-lowering therapy is not.
Journal article
Commun Med (Lond)
14/11/2022
2