Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Machine learning can be used to identify relevant trajectory shape features for improved predictive risk modeling, which can help inform decisions for individualized patient management in intensive care during COVID-19 outbreaks. We present explainable random forests to dynamically predict next day mortality risk in COVID -19 positive and negative patients admitted to the Mount Sinai Health System between March 1st and June 8th, 2020 using patient time-series data of vitals, blood and other laboratory measurements from the previous 7 days. Three different models were assessed by using time series with: 1) most recent patient measurements, 2) summary statistics of trajectories (min/max/median/first/last/count), and 3) coefficients of fitted cubic splines to trajectories. AUROC and AUPRC with cross-validation were used to compare models. We found that the second and third models performed statistically significantly better than the first model. Model interpretations are provided at patient-specific level to inform resource allocation and patient care.

Type

Conference paper

Publication Date

21/03/2022