Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Progression rate of age-related macular degeneration (AMD) varies substantially, yet its association with genetic variation has not been widely examined. METHODS: We tested whether progression rate from intermediate AMD to geographic atrophy (GA) or choroidal neovascularization (CNV) was correlated with genotype at seven single nucleotide polymorphisms (SNPs) in the four genes most strongly associated with risk of advanced AMD. Cox proportional hazards survival models examined the association between progression time and SNP genotype while adjusting for age and sex and accounting for variable follow-up time, right censored data, and repeated measures (left and right eyes). RESULTS: Progression rate varied with the number of risk alleles at the CFH:rs10737680 but not the CFH:rs1061170 (Y402H) SNP; individuals with two risk alleles progressed faster than those with one allele (hazard ratio [HR] = 1.61, 95% confidence interval [CI] = 1.08-2.40, P < 0.02, n = 547 eyes), although this was not significant after Bonferroni correction. This signal was likely driven by an association at the correlated protective variant, CFH:rs6677604, which tags the CFHR1-3 deletion; individuals with at least one protective allele progressed more slowly. Considering GA and CNV separately showed that the effect of CFH:rs10737680 was stronger for progression to CNV. CONCLUSIONS: Results support previous findings that AMD progression rate is influenced by CFH, and suggest that variants within CFH may have different effects on risk versus progression. However, since CFH:rs10737680 was not significant after Bonferroni correction and explained only a relatively small portion of variation in progression rate beyond that explained by age, we suggest that additional factors contribute to progression.

Original publication

DOI

10.1167/iovs.16-19519

Type

Journal article

Journal

Invest Ophthalmol Vis Sci

Publication Date

2016

Volume

57

Pages

6107 - 6115

Keywords

Aged Aged, 80 and over Alleles Complement Factor H/*genetics/metabolism DNA/*genetics Disease Progression Female Follow-Up Studies *Genetic Predisposition to Disease Genotype Humans Macular Degeneration/diagnosis/*genetics/metabolism Male Middle Aged *Polymorphism, Single Nucleotide ROC Curve Retrospective Studies Risk Factors Time Factors