Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.

Original publication

DOI

10.1186/s13059-018-1457-6

Type

Journal article

Journal

Genome Biol

Publication Date

17/07/2018

Volume

19

Keywords

ADAMTS6, Conduction, Exome chip, Meta-analysis, ADAMTS Proteins, African Continental Ancestry Group, Animals, Connexin 43, Electrocardiography, European Continental Ancestry Group, Exome, Female, Gene Expression, Gene Expression Profiling, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Humans, Male, Mice, Middle Aged, Myocardium, Open Reading Frames, Polymorphism, Single Nucleotide, Whole Exome Sequencing