Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Voxel-based morphometry (VBM) has been used repeatedly in single-center studies to investigate regional gray matter (GM) atrophy in multiple sclerosis (MS). In multi-center trials, across-scanner variations might interfere with the detection of disease-specific structural abnormalities, thereby potentially limiting the use of VBM. Here we evaluated longitudinally inter-site differences and inter-site comparability of regional GM in MS using VBM. Baseline and follow up 3D T1-weighted magnetic resonance imaging (MRI) data of 248 relapsing-remitting (RR) MS patients, recruited in two clinical centers, (center1/2: n = 129/119; mean age 42.6 ± 10.7/43.3 ± 9.3; male:female 33:96/44:75; median disease duration 150 [72-222]/116 [60-156]) were acquired on two different 1.5T MR scanners. GM volume changes between baseline and year 2 while controlling for age, gender, disease duration, and global GM volume were analyzed. The main effect of time on regional GM volume was larger in data of center two as compared to center one in most of the brain regions. Differential effects of GM volume reductions occurred in a number of GM regions of both hemispheres, in particular in the fronto-temporal and limbic cortex (cluster P corrected <0.05). Overall disease-related effects were found bilaterally in the cerebellum, uncus, inferior orbital gyrus, paracentral lobule, precuneus, inferior parietal lobule, and medial frontal gyrus (cluster P corrected <0.05). The differential effects were smaller as compared to the overall effects in these regions. These results suggest that the effects of different scanners on longitudinal GM volume differences were rather small and thus allow pooling of MR data and subsequent combined image analysis.

Original publication




Journal article


Hum Brain Mapp

Publication Date





1225 - 1245


Adult, Case-Control Studies, Cerebral Cortex, Cross-Sectional Studies, Female, Follow-Up Studies, Humans, Longitudinal Studies, Magnetic Resonance Imaging, Male, Middle Aged, Multiple Sclerosis, Time Factors