Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Increasing numbers of economic evaluations are conducted alongside randomised controlled trials. Such studies include factorial trials, which randomise patients to different levels of two or more factors and can therefore evaluate the effect of multiple treatments alone and in combination. Factorial trials can provide increased statistical power or assess interactions between treatments, but raise additional challenges for trial-based economic evaluations: interactions may occur more commonly for costs and quality-adjusted life-years (QALYs) than for clinical endpoints; economic endpoints raise challenges for transformation and regression analysis; and both factors must be considered simultaneously to assess which treatment combination represents best value for money. This article aims to examine issues associated with factorial trials that include assessment of costs and/or cost-effectiveness, describe the methods that can be used to analyse such studies and make recommendations for health economists, statisticians and trialists. A hypothetical worked example is used to illustrate the challenges and demonstrate ways in which economic evaluations of factorial trials may be conducted, and how these methods affect the results and conclusions. Ignoring interactions introduces bias that could result in adopting a treatment that does not make best use of healthcare resources, while considering all interactions avoids bias but reduces statistical power. We also introduce the concept of the opportunity cost of ignoring interactions as a measure of the bias introduced by not taking account of all interactions. We conclude by offering recommendations for planning, analysing and reporting economic evaluations based on factorial trials, taking increased analysis costs into account. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Original publication

DOI

10.1002/sim.7322

Type

Journal article

Journal

Stat Med

Publication Date

15/08/2017

Volume

36

Pages

2814 - 2830

Keywords

cost-utility analysis, factorial design, guidelines, randomised controlled trial, trial-based economic evaluation, Antihypertensive Agents, Bias, Biostatistics, Computer Simulation, Cost-Benefit Analysis, Humans, Hypertension, Models, Statistical, Quality-Adjusted Life Years, Randomized Controlled Trials as Topic, Regression Analysis