Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sex hormones, particularly the androgens, are important for the growth of the prostate gland and have been implicated in prostate cancer carcinogenesis, yet the determinants of endogenous steroid hormone levels remain poorly understood. Twin studies suggest a heritable component for circulating concentrations of sex hormones, although epidemiologic evidence linking steroid hormone gene variants to prostate cancer is limited. Here we report on findings from a comprehensive study of genetic variation at the CYP19A1 locus in relation to prostate cancer risk and to circulating steroid hormone concentrations in men by the Breast and Prostate Cancer Cohort Consortium (BPC3), a large collaborative prospective study. The BPC3 systematically characterized variation in CYP19A1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nucleotide polymorphisms (htSNP) that efficiently predict common variants in U.S. and European whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs in 8,166 prostate cancer cases and 9,079 study-, age-, and ethnicity-matched controls. CYP19A1 htSNPs, two common missense variants and common haplotypes were not significantly associated with risk of prostate cancer. However, several htSNPs in linkage disequilibrium blocks 3 and 4 were significantly associated with a 5% to 10% difference in estradiol concentrations in men [association per copy of the two-SNP haplotype rs749292-rs727479 (A-A) versus noncarriers; P = 1 x 10(-5)], and with inverse, although less marked changes, in free testosterone concentrations. These results suggest that although germline variation in CYP19A1 characterized by the htSNPs produces measurable differences in sex hormone concentrations in men, they do not substantially influence risk of prostate cancer.

Original publication

DOI

10.1158/1055-9965.EPI-09-0496

Type

Journal article

Journal

Cancer Epidemiol Biomarkers Prev

Publication Date

10/2009

Volume

18

Pages

2734 - 2744

Keywords

Aged, Aromatase, Case-Control Studies, Cohort Studies, Disease Progression, Female, Genetic Predisposition to Disease, Genetic Variation, Gonadal Steroid Hormones, Humans, Male, Neoplasm Staging, Polymorphism, Single Nucleotide, Prognosis, Prospective Studies, Prostatic Neoplasms, Risk Factors