Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

How the genetic composition of a population changes through stochastic processes, such as genetic drift, in combination with deterministic processes, such as selection, is critical to understanding how phenotypes vary in space and time. Here, we show how evolutionary forces affecting selection, including recombination and effective population size, drive genomic patterns of allele-specific expression (ASE). Integrating tissue-specific genotypic and transcriptomic data from 1500 individuals from two different cohorts, we demonstrate that ASE is less often observed in regions of low recombination, and loci in high or normal recombination regions are more efficient at using ASE to underexpress harmful mutations. By tracking genetic ancestry, we discriminate between ASE variability due to past demographic effects, including subsequent bottlenecks, versus local environment. We observe that ASE is not randomly distributed along the genome and that population parameters influencing the efficacy of natural selection alter ASE levels genome wide.

Original publication

DOI

10.1126/sciadv.abl3819

Type

Journal article

Journal

Sci Adv

Publication Date

13/05/2022

Volume

8

Keywords

Alleles, Genetic Drift, Genetic Variation, Humans, Recombination, Genetic, Selection, Genetic