Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To ensure global food security, crop breeders conduct extensive trials across various locations to discover new crop varieties that grow more robustly, have higher yields, and are resilient to local stress factors. These trials consist of thousands of plots, each containing a unique crop variety monitored at intervals during the growing season, requiring considerable manual effort. In this study, we combined satellite imagery and deep learning techniques to automatically collect plot-level phenotypes from plant breeding trials in South Australia and Sonora, Mexico. We implemented two novel methods, utilising state-of-the-art computer vision architectures, to predict plot-level phenotypes: flowering, canopy cover, greenness, height, biomass, and normalised difference vegetation index (NDVI). The first approach uses a classification model to predict for just the centred plot. The second approach predicts per-pixel and then aggregates predictions to determine a value per-plot. Using a modified ResNet18 model to predict the centred plot was found to be the most effective method. These results highlight the exciting potential for improving crop trials with remote sensing and machine learning.

Original publication




Journal article


Remote Sensing

Publication Date