Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Workplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks. METHODS: Sick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place. RESULTS: Using sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88 weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5 weeks earlier. CONCLUSION: Sick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.

Original publication

DOI

10.1186/s12879-020-05754-5

Type

Journal article

Journal

BMC Infect Dis

Publication Date

11/01/2021

Volume

21

Keywords

Influenza, Outbreak detection, Sick-leave, Surveillance, Absenteeism, Epidemics, France, Humans, Incidence, Influenza, Human, Insurance, Health, Middle Aged, Models, Statistical, Public Health Surveillance, Retrospective Studies, Sensitivity and Specificity, Sentinel Surveillance, Sick Leave, Workplace