Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.

Original publication

DOI

10.18653/v1/2020.louhi-1.4

Type

Conference paper

Publication Date

01/01/2020

Pages

24 - 37