Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Combined positron emission tomography (PET) and computed tomography (CT) can assess both anatomy and biology of carotid atherosclerosis. We sought to assess whether 18F-fluoride or 18F-fluorodeoxyglucose can identify culprit and high-risk carotid plaque. We performed 18F-fluoride and 18F-fluorodeoxyglucose PET/CT in 26 patients after recent transient ischemic attack or minor ischemic stroke: 18 patients with culprit carotid stenosis awaiting carotid endarterectomy and 8 controls without culprit carotid atheroma. We compared standardized uptake values in the clinically adjudicated culprit to the contralateral asymptomatic artery, and assessed the relationship between radiotracer uptake and plaque phenotype or predicted cardiovascular risk (ASSIGN score [Assessing Cardiovascular Risk Using SIGN Guidelines to Assign Preventive Treatment]). We also performed micro PET/CT and histological analysis of excised plaque. On histological and micro PET/CT analysis, 18F-fluoride selectively highlighted microcalcification. Carotid 18F-fluoride uptake was increased in clinically adjudicated culprit plaques compared with asymptomatic contralateral plaques (log10standardized uptake valuemean 0.29±0.10 versus 0.23±0.11, P=0.001) and compared with control patients (log10standardized uptake valuemean 0.29±0.10 versus 0.12±0.11, P=0.001). 18F-Fluoride uptake correlated with high-risk plaque features (remodeling index [r=0.53, P=0.003], plaque burden [r=0.51, P=0.004]), and predicted cardiovascular risk [r=0.65, P=0.002]). Carotid 18F-fluorodeoxyglucose uptake appeared to be increased in 7 of 16 culprit plaques, but no overall differences in uptake were observed in culprit versus contralateral plaques or control patients. However, 18F-fluorodeoxyglucose did correlate with predicted cardiovascular risk (r=0.53, P=0.019), but not with plaque phenotype. 18F-Fluoride PET/CT highlights culprit and phenotypically high-risk carotid plaque. This has the potential to improve risk stratification and selection of patients who may benefit from intervention.

Original publication

DOI

10.1161/circimaging.116.004976

Type

Journal article

Journal

Circulation. Cardiovascular imaging

Publication Date

03/2017

Volume

10

Addresses

From the BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (A.T.V., W.S.A.J., A.M., G.S., R.O.F., N.L.M., E.J.R.v.B., M.R.D., D.E.N.); Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, United Kingdom (A.I., J.R., A.P.D.); and Clinical Research Imaging Centre (T.C., G.R., A.F., C.L., E.J.R.v.B., M.R.D., D.E.N.) and Centre for Clinical Brain Sciences (R.A.-S.S., M.D., W.W.), University of Edinburgh, United Kingdom. avesey@staffmail.ed.ac.uk.

Keywords

Carotid Artery, Internal, Humans, Carotid Stenosis, Ischemic Attack, Transient, Fluorides, Fluorine Radioisotopes, Fluorodeoxyglucose F18, Radiopharmaceuticals, Endarterectomy, Carotid, Severity of Illness Index, Risk Factors, Case-Control Studies, Pilot Projects, Predictive Value of Tests, Phenotype, Aged, Aged, 80 and over, Middle Aged, Female, Male, Stroke, X-Ray Microtomography, Plaque, Atherosclerotic, Positron Emission Tomography Computed Tomography