Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Manual coding of phenotypes in brain radiology reports is time consuming. We developed a natural language processing (NLP) algorithm to enable automatic identification of brain imaging in radiology reports performed in routine clinical practice in the UK National Health Service (NHS). METHODS: We used anonymized text brain imaging reports from a cohort study of stroke/TIA patients and from a regional hospital to develop and test an NLP algorithm. Two experts marked up text in 1692 reports for 24 cerebrovascular and other neurological phenotypes. We developed and tested a rule-based NLP algorithm first within the cohort study, and further evaluated it in the reports from the regional hospital. RESULTS: The agreement between expert readers was excellent (Cohen's κ =0.93) in both datasets. In the final test dataset (n = 700) in unseen regional hospital reports, the algorithm had very good performance for a report of any ischaemic stroke [sensitivity 89% (95% CI:81-94); positive predictive value (PPV) 85% (76-90); specificity 100% (95% CI:0.99-1.00)]; any haemorrhagic stroke [sensitivity 96% (95% CI: 80-99), PPV 72% (95% CI:55-84); specificity 100% (95% CI:0.99-1.00)]; brain tumours [sensitivity 96% (CI:87-99); PPV 84% (73-91); specificity: 100% (95% CI:0.99-1.00)] and cerebral small vessel disease and cerebral atrophy (sensitivity, PPV and specificity all > 97%). We obtained few reports of subarachnoid haemorrhage, microbleeds or subdural haematomas. In 110,695 reports from NHS Tayside, atrophy (n = 28,757, 26%), small vessel disease (15,015, 14%) and old, deep ischaemic strokes (10,636, 10%) were the commonest findings. CONCLUSIONS: An NLP algorithm can be developed in UK NHS radiology records to allow identification of cohorts of patients with important brain imaging phenotypes at a scale that would otherwise not be possible.

Original publication




Journal article


BMC Med Inform Decis Mak

Publication Date





Brain imaging, Natural language processing, Phenotyping, Radiology, Radiology reports, Stroke, Adult, Aged, Algorithms, Cohort Studies, Electronic Health Records, Female, Humans, Male, Middle Aged, Natural Language Processing, Neuroimaging, Radiology, State Medicine, Stroke, United Kingdom, Young Adult