Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Simpson's biplane rule (SBR) is considered the gold standard method for left ventricle (LV) volume quantification from echocardiography but relies on a summation-of-disks approach that makes assumptions about LV orientation and cross-sectional shape. We aim to identify key limiting factors in SBR and to develop a new robust standard for volume quantification. Three methods for computing LV volume were studied: (i) SBR, (ii) addition of a truncated basal cone (TBC) to SBR and (iii) a novel method of basal-oriented disks (BODs). Three retrospective cohorts representative of the young, adult healthy and heart failure populations were used to study the impact of anatomical variations in volume computations. Results reveal how basal slanting can cause over- and underestimation of volume, with errors by SBR and TBC >10 mL for slanting angles >6°. Only the BOD method correctly accounted for basal slanting, reducing relative volume errors by SBR from -2.23 ± 2.21% to -0.70 ± 1.91% in the adult population and similar qualitative performance in the other two cohorts. In conclusion, the summation of basal oriented disks, a novel interpretation of SBR, is a more accurate and precise method for estimating LV volume.

Original publication

DOI

10.1016/j.ultrasmedbio.2022.07.013

Type

Journal article

Journal

Ultrasound Med Biol

Publication Date

12/2022

Volume

48

Pages

2476 - 2485

Keywords

Apical chamber views, Left ventricle volumes, Modified Simpson's biplane rule, Two-dimensional echocardiography, Retrospective Studies, Echocardiography, Heart Ventricles, Stroke Volume