Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor β1 (Tgf-β) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-β dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.

Original publication




Journal article


Hum Mol Genet

Publication Date





1325 - 1335


Animals, Collagen, Collagen Type V, Disease Models, Animal, Ehlers-Danlos Syndrome, Haploinsufficiency, Mice, Transforming Growth Factor beta