Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fall incidents remain an important health hazard for older adults. Fall detection systems can reduce the consequences of a fall incident by insuring that timely aid is given. Currently fall detection algorithms however suffer a reduction in accuracy when introduced in real-life situations. In this paper a late fusion technique is proposed that will improve the accuracy of existing fall detection systems. It combines the confidence levels of different single camera fall detection systems. Four different aggregation methods are compared to each other based on the Area Under the Curve (AUC) of precision-recall curves. Calculating the median of the confidence levels of five cameras an increase of 218% in the AUC of the precision-recall-curves is achieved compared to the AUC of the single camera fall detector. These results show that significant improvements can be made to the accuracy of single camera fall detectors in a relatively easy way.

Original publication

DOI

10.1109/embc.2017.8037406

Type

Journal article

Journal

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference

Publication Date

07/2017

Volume

2017

Pages

2667 - 2671

Keywords

Area Under Curve, Accidental Falls, Algorithms