Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Imaging genetics analyses use neuroimaging traits as intermediate phenotypes to infer the degree of genetic contribution to brain structure and function in health and/or illness. Coefficients of relatedness (CR) summarize the degree of genetic similarity among subjects and are used to estimate the heritability - the proportion of phenotypic variance explained by genetic factors. The CR can be inferred directly from genome-wide genotype data to explain the degree of shared variation in common genetic polymorphisms (SNP-heritability) among related or unrelated subjects. We developed a central processing and graphics processing unit (CPU and GPU) accelerated Fast and Powerful Heritability Inference (FPHI) approach that linearizes likelihood calculations to overcome the ∼N2-3 computational effort dependency on sample size of classical likelihood approaches. We calculated for 60 regional and 1.3 × 105 voxel-wise traits in N = 1,206 twin and sibling participants from the Human Connectome Project (HCP) (550 M/656 F, age = 28.8 ± 3.7 years) and N = 37,432 (17,531 M/19,901 F; age = 63.7 ± 7.5 years) participants from the UK Biobank (UKBB). The FPHI estimates were in excellent agreement with heritability values calculated using Genome-wide Complex Trait Analysis software (r = 0.96 and 0.98 in HCP and UKBB sample) while significantly reducing computational (102-4 times). The regional and voxel-wise traits heritability estimates for the HCP and UKBB were likewise in excellent agreement (r = 0.63-0.76, p < 10-10). In summary, the hardware-accelerated FPHI made it practical to calculate heritability values for voxel-wise neuroimaging traits, even in very large samples such as the UKBB. The patterns of additive genetic variance in neuroimaging traits measured in a large sample of related and unrelated individuals showed excellent agreement regardless of the estimation method. The code and instruction to execute these analyses are available at www.solar-eclipse-genetics.org.

Original publication

DOI

10.1016/j.neuroimage.2021.118700

Type

Journal article

Journal

Neuroimage

Publication Date

15/12/2021

Volume

245

Keywords

Computational methods, FPHI, GCTA, Heritability, Imaging genetics, Pedigree, Adult, Algorithms, Biological Specimen Banks, Computational Biology, Connectome, Female, Genetic Phenomena, Genome-Wide Association Study, Humans, Male, Middle Aged, Neuroimaging, Phenotype, Polymorphism, Single Nucleotide