Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Community health interventions often seek to intentionally destroy paths between individuals to prevent the spread of infectious diseases. Immunizing individuals through direct vaccination or the provision of health education prevents pathogen transmission and the propagation of misinformation concerning medical treatments. However, it remains an open question whether network-based strategies should be used in place of conventional field approaches to target individuals for medical treatment in low-income countries. We collected complete friendship and health advice networks in 17 rural villages of Mayuge District, Uganda. Here we show that acquaintance algorithms, i.e., selecting neighbors of randomly selected nodes, were systematically more efficient in fragmenting all networks than targeting well-established community roles, i.e., health workers, village government members, and schoolteachers. Additionally, community roles were not good proxy indicators of physical proximity to other households or connections to many sick people. We also show that acquaintance algorithms were effective in offsetting potential noncompliance with deworming treatments for 16,357 individuals during mass drug administration (MDA). Health advice networks were destroyed more easily than friendship networks. Only an average of 32% of nodes were removed from health advice networks to reduce the percentage of nodes at risk for refusing treatment in MDA to below 25%. Treatment compliance of at least 75% is needed in MDA to control human morbidity attributable to parasitic worms and progress toward elimination. Our findings point toward the potential use of network-based approaches as an alternative to role-based strategies for targeting individuals in rural health interventions.

Original publication

DOI

10.1073/pnas.1700166114

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

05/09/2017

Volume

114

Pages

E7425 - E7431

Keywords

community health, immunization, mass drug administration, percolation, social networks, Algorithms, Friends, Health Education, Health Personnel, Humans, Immunization Programs, Infection Control, Mass Drug Administration, Parasitic Diseases, Public Health, Rural Population, Social Support, Treatment Refusal, Uganda