Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Studies of three-dimensional patellar kinematics done with little or no applied load may not accurately reflect kinematics at physiological load levels, and may provide different results to those acquired with greater applied loads or in physiologic weightbearing. We report the effect of load magnitude on three-dimensional patellar kinematics (flexion, spin and tilt; proximal, lateral and anterior translation) using a validated, sequential static, MRI-based method. Ten healthy subjects loaded their study knee to 0% (no load), 15% and 30% bodyweight (BW) using a custom designed loading rig. Differences between loading levels were determined as a function of knee flexion for each kinematic parameter using linear hierarchical random-effects models. Quadratic and random slope terms were included in the models when significant. We found that the patellae flexed less with knee flexion at 30% BW load compared to 0% BW load (p<0.001) and 15% BW (p=0.004) load. The patellae showed a slight medial tilt with knee flexion at 30% BW load which was significantly less than the medial tilt seen at 0% BW load (p=0.017) and 15% BW load (p=0.043) with knee flexion. Small but statistically significant differences were also observed for proximal and anterior translation; the patellae were in a more proximal and posterior position at 30% BW load than at 0% BW load (p=0.010 and p=0.005, respectively) and 15% BW load (p<0.001 and p=0.029, respectively). Since differences in three-dimensional patellar kinematics were observed between loading levels, magnitudes of prescribed loads must be considered when designing studies and comparing results between studies.

Original publication

DOI

10.1016/j.jbiomech.2010.03.027

Type

Journal article

Journal

J Biomech

Publication Date

20/07/2010

Volume

43

Pages

1890 - 1897

Keywords

Adult, Biomechanical Phenomena, Female, Humans, Knee Joint, Magnetic Resonance Imaging, Male, Patella, Patellofemoral Joint, Range of Motion, Articular, Weight-Bearing