Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Serum creatinine (S CR) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S CR level is explicable by genetic factors. METHODS: We performed a meta-analysis of genome-wide association studies of S CR undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with SCR (candidate loci) were replicated in two additional population-based samples ('replication cohorts'). RESULTS: After the discovery meta-analysis, 29 loci were selected for replication. Association between SCR level and polymorphisms in the collagen type XXII alpha 1 (COL22A1) gene, on chromosome 8, and in the synaptotagmin-1 (SYT1) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 x 10(-6) and 1.7 x 10(-4), respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (GABRR2) gene and the ubiquitin-conjugating enzyme E2-J1 (UBE2J1) gene (replication p value = 3.6 x 10(-3)). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (UMOD) gene and in the schroom family member 3 (SCHROOM3) gene were also replicated. CONCLUSIONS: While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes SYT1 and GABRR2 corroborate previous findings that highlighted a possible role of the neurotransmitters GABAA receptors in the regulation of the glomerular basement membrane and a possible interaction between GABAA receptors and synaptotagmin-I at the podocyte level.

Original publication

DOI

10.1186/1471-2350-11-41

Type

Journal article

Journal

BMC Med Genet

Publication Date

11/03/2010

Volume

11

Keywords

Adolescent, Adult, Aged, Aged, 80 and over, Autoantigens, Chromosomes, Human, Pair 12, Chromosomes, Human, Pair 8, Cohort Studies, Creatinine, Croatia, European Continental Ancestry Group, Genome-Wide Association Study, Germany, Humans, Middle Aged, Non-Fibrillar Collagens, Polymorphism, Single Nucleotide, Receptors, GABA-A, Reproducibility of Results, Synaptotagmin I, Young Adult